.. _reading: Reading data ============ .. currentmodule:: pupil_recording_interface .. note:: Make sure that you have installed the necessary :ref:`dependencies for running the examples`. Loading recordings ------------------ pupil_recording_interface provides a simple interface for loading recordings made with Pupil Capture into Python. Recordings are loaded as `xarray`_ Datasets which provide an elegant way of working with multi-dimensional labeled data. .. _xarray: https://xarray.pydata.org To get started, we use :py:func:`get_test_recording` to download and cache a very short example recording. The method returns the path to the cached folder: .. doctest:: >>> import pupil_recording_interface as pri >>> folder = pri.get_test_recording() Gaze .... You can easily load recorded gaze data with :py:meth:`load_gaze`: .. doctest:: >>> pri.load_gaze(folder) Dimensions: (cartesian_axis: 3, pixel_axis: 2, time: 5160) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.149777889 ... 2019-10-10T16:43:41.262381792 * pixel_axis (pixel_axis) >> pri.load_gaze(folder, source='3d Gaze Mapper') Dimensions: (cartesian_axis: 3, pixel_axis: 2, time: 5125) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.278882265 ... 2019-10-10T16:43:41.209933281 * pixel_axis (pixel_axis) >> pri.load_gaze( ... folder, source={'2d': '2d Gaze Mapper ', '3d': '3d Gaze Mapper'} ... ) Dimensions: (cartesian_axis: 3, pixel_axis: 2, time: 4987) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.278882265 ... 2019-10-10T16:43:41.209933281 * pixel_axis (pixel_axis) >> pri.get_gaze_mappers(folder) # doctest:+SKIP {'2d Gaze Mapper ', '3d Gaze Mapper', 'recording'} Pupils ...... Pupil data can be loaded in a similar manner with :py:meth:`load_pupils`. Since the recorded pupil data in the example recording uses the 3d pupil detector, we need to specify ``method="3d"``: .. doctest:: >>> pri.load_pupils(folder, method="3d") Dimensions: (cartesian_axis: 3, pixel_axis: 2, time: 5170) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.188713789 ... 2019-10-10T16:43:41.300101757 * pixel_axis (pixel_axis) >> pri.load_pupils(folder, source="offline", method="2d") Dimensions: (pixel_axis: 2, time: 5164) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.277472973 ... 2019-10-10T16:43:41.364654779 * pixel_axis (pixel_axis) >> pri.load_markers(folder) Dimensions: (pixel_axis: 2, time: 240) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.238371849 ... 2019-10-10T16:43:41.232636929 * pixel_axis (pixel_axis) `. All of the above methods accept a ``cache`` argument that will cache the loaded data in the netCDF format, making subsequent loading significantly faster: >>> pri.load_gaze(folder, cache=True) Dimensions: (cartesian_axis: 3, pixel_axis: 2, time: 5160) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.149777889 ... 2019-10-10T16:43:41.262381792 * pixel_axis (pixel_axis) object 'x' 'y' * cartesian_axis (cartesian_axis) object 'x' 'y' 'z' Data variables: eye (time) float64 ... gaze_norm_pos (time, pixel_axis) float64 ... gaze_point (time, cartesian_axis) float64 ... eye0_center (time, cartesian_axis) float64 ... eye1_center (time, cartesian_axis) float64 ... eye0_normal (time, cartesian_axis) float64 ... eye1_normal (time, cartesian_axis) float64 ... gaze_confidence_3d (time) float64 ... .. testcode:: :hide: import shutil shutil.rmtree(folder / "cache") Loading videos -------------- Since video data is rather large, we rarely bulk-load entire video recordings (although it is possible, see `Other video functionality`_). Rather, this library provides a :py:class:`VideoReader` class with which we can go through videos frame by frame. You can get information about the world camera video with: .. doctest:: >>> reader = pri.VideoReader(folder) >>> reader.video_info {'resolution': (1280, 720), 'frame_count': 504, 'fps': 23.987} With :py:func:`VideoReader.load_raw_frame` you can retrieve a raw video frame by index: .. doctest:: >>> reader = pri.VideoReader(folder) >>> frame = reader.load_raw_frame(100) >>> frame.shape (720, 1280, 3) or by timestamp: .. doctest:: >>> reader = pri.VideoReader(folder) >>> frame = reader.load_raw_frame(reader.timestamps[100]) >>> frame.shape (720, 1280, 3) Here, we used the ``timestamps`` attribute of the reader which contains the timestamps for each frame to get the timestamp of the frame with index 100. If you have the ``matplotlib`` library installed, you can show the frame with ``imshow()``. Note that you have to reverse the last axis as the frame is loaded as a BGR image but imshow expects RGB: .. code-block:: python >>> import matplotlib.pyplot as plt >>> plt.imshow(frame[:, :, ::-1]) .. plot:: import pupil_recording_interface as pri reader = pri.VideoReader(pri.get_test_recording()) frame = reader.load_raw_frame(100) import matplotlib.pyplot as plt fig = plt.figure(figsize=(12.8, 7.2)) ax = plt.axes([0,0,1,1], frameon=False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.imshow(frame[:, :, ::-1]) Eye videos can be loaded by specifying the ``stream`` parameter: .. doctest:: >>> eye_reader = pri.VideoReader(folder, stream='eye0') With ``return_timestamp=True`` you can get the corresponding timestamp for a frame: .. doctest:: >>> timestamp, frame = eye_reader.load_frame(100, return_timestamp=True) >>> timestamp Timestamp('2019-10-10 16:43:21.087194920') This timestamp can now be used to get the closest world video frame: .. doctest:: >>> frame = reader.load_frame(timestamp) >>> frame.shape (720, 1280, 3) ROI extraction .............. You can easily extract an ROI around the current gaze point in the image by specifying the ``norm_pos`` and ``roi_size`` parameters and using the :py:func:`VideoReader.load_frame` method: .. doctest:: >>> gaze = pri.load_dataset(folder, gaze='2d Gaze Mapper ') >>> reader = pri.VideoReader( ... folder, norm_pos=gaze.gaze_norm_pos, roi_size=64 ... ) >>> frame = reader.load_frame(100) >>> frame.shape (64, 64, 3) >>> plt.imshow(frame[:, :, ::-1]) # doctest:+SKIP .. plot:: import pupil_recording_interface as pri gaze = pri.load_dataset(pri.get_test_recording(), gaze='2d Gaze Mapper ') reader = pri.VideoReader( pri.get_test_recording(), norm_pos=gaze.gaze_norm_pos, roi_size=64 ) frame = reader.load_frame(100) import matplotlib.pyplot as plt fig = plt.figure(figsize=(3.2, 3.2)) ax = plt.axes([0,0,1,1], frameon=False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.imshow(frame[:, :, ::-1]) Other video functionality ......................... Video frames can also be sub-sampled and converted to grayscale with the ``subsampling`` and ``color_format`` parameters: .. doctest:: >>> reader = pri.VideoReader( ... folder, color_format='gray', subsampling=4. ... ) >>> frame = reader.load_frame(100) >>> frame.shape (180, 320) :py:func:`VideoReader.read_frames` provides a generator for frames that can be restricted to an index or timestamp range with the ``start`` and ``end`` parameters: .. doctest:: >>> reader = pri.VideoReader(folder) >>> reader.read_frames(start=100, end=200) # doctest:+ELLIPSIS The video reader also provides a :py:func:`VideoReader.load_dataset` method. The method is rather slow as it has to load each frame individually. You can provide ``start`` and ``end`` timestamps to specify the time frame of the loaded data: .. doctest:: >>> reader = pri.VideoReader(folder, subsampling=8.) >>> reader.load_dataset( ... start=reader.user_info['experiment_start'], ... end=reader.user_info['experiment_end'], ... ) Dimensions: (color: 3, frame_x: 160, frame_y: 90, time: 22) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:23.237552881 ... 2019-10-10T16:43:24.175843954 * frame_x (frame_x) int64 0 1 2 3 4 5 6 7 ... 152 153 154 155 156 157 158 159 * frame_y (frame_y) int64 0 1 2 3 4 5 6 7 8 9 ... 81 82 83 84 85 86 87 88 89 * color (color) >> pri.load_info(folder) # doctest:+NORMALIZE_WHITESPACE {'duration_s': 21.111775958999715, 'meta_version': '2.3', 'min_player_version': '2.0', 'recording_name': '2019_10_10', 'recording_software_name': 'Pupil Capture', 'recording_software_version': '1.16.95', 'recording_uuid': 'e5059604-26f1-42ed-8e35-354198b56021', 'start_time_synced_s': 2294.807856069, 'start_time_system_s': 1570725800.220913, 'system_info': 'User: test_user, Platform: Linux'} You can also load the user info (``user_info.csv``) with :py:meth:`load_user_info`: .. doctest:: >>> pri.load_user_info(folder) # doctest:+NORMALIZE_WHITESPACE {'name': 'TEST', 'pre_calibration_start': Timestamp('2019-10-10 16:43:21.220912933'), 'pre_calibration_end': Timestamp('2019-10-10 16:43:22.220912933'), 'experiment_start': Timestamp('2019-10-10 16:43:23.220912933'), 'experiment_end': Timestamp('2019-10-10 16:43:24.220912933'), 'post_calibration_start': Timestamp('2019-10-10 16:43:25.220912933'), 'post_calibration_end': Timestamp('2019-10-10 16:43:26.220912933'), 'height': 1.8} A recording usually also contains other msgpack-encoded files, for example the camera intrinsics. These can be loaded with :py:meth:`load_object` .. doctest:: >>> pri.load_object(folder / "world.intrinsics") # doctest:+NORMALIZE_WHITESPACE {'version': 1, '(1280, 720)': {'camera_matrix': [[826.1521272145403, 0.0, 627.8343012631811], [0.0, 769.1786602466223, 359.810742797992], [0.0, 0.0, 1.0]], 'dist_coefs': [[-0.14119955505495468], [0.024919584525371758], [-0.21233916934283625], [0.22636274811293397]], 'resolution': [1280, 720], 'cam_type': 'fisheye'}} Data export ----------- .. note:: Make sure you have installed the necessary :ref:`dependencies for data export`. Recorded data can also directly be written to disk with :py:meth:`write_netcdf`: .. doctest:: >>> pri.write_netcdf(folder, gaze='recording', output_folder='.') This will create a ``gaze.nc`` file in the current folder. This file type can directly be loaded by xarray: .. doctest:: >>> import xarray as xr >>> xr.open_dataset('gaze.nc') Dimensions: (cartesian_axis: 3, pixel_axis: 2, time: 5160) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.149777889 ... 2019-10-10T16:43:41.262381792 * pixel_axis (pixel_axis) object 'x' 'y' * cartesian_axis (cartesian_axis) object 'x' 'y' 'z' Data variables: eye (time) float64 ... gaze_norm_pos (time, pixel_axis) float64 ... gaze_point (time, cartesian_axis) float64 ... eye0_center (time, cartesian_axis) float64 ... eye1_center (time, cartesian_axis) float64 ... eye0_normal (time, cartesian_axis) float64 ... eye1_normal (time, cartesian_axis) float64 ... gaze_confidence_3d (time) float64 ... .. testcleanup:: import os os.remove('gaze.nc')