.. _analysis: Offline analysis ================ .. currentmodule:: pupil_recording_interface pupil_recording_interface provides straightforward interfaces for post-hoc pupil detection, calibration and gaze mapping, similar to Pupil Player. Pupil detection --------------- .. note:: Make sure that you have installed the necessary :ref:`dependencies for pupil detection`. We start by creating a :py:class:`PupilDetector` in the same way as in the :ref:`processing tutorial`. .. doctest:: >>> import pupil_recording_interface as pri >>> pupil_detector = pri.PupilDetector(camera_id=0) For post-hoc pupil detection we first create a :py:class:`VideoReader` instance that points to an eye camera video. Now we can use the :py:meth:`PupilDetector.batch_run` method, which will return a list containing pupil data for each frame: .. doctest:: >>> eye0_reader = pri.VideoReader( ... pri.get_test_recording(), stream="eye0", color_format="gray" ... ) >>> pupil_list_eye0 = pupil_detector.batch_run(eye0_reader) >>> pupil_list_eye0[0] # doctest:+NORMALIZE_WHITESPACE +ELLIPSIS {'ellipse': {'center': (96..., 130...), 'axes': (39..., 44...), 'angle': 77...}, 'diameter': 44..., 'location': (96..., 130...), 'confidence': 0.99, 'internal_2d_raw_data': ..., 'norm_pos': (0.5..., 0.6...), 'timestamp': 2294..., 'method': '2d c++', 'id': 0, 'topic': 'pupil'} We can also tell the detector to stop after 100 frames and return a dataset: .. doctest:: >>> pupil_detector.batch_run(eye0_reader, end=100, return_type="dataset") Dimensions: (pixel_axis: 2, time: 100) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.280291796 ... 2019-10-10T16:43:21.079125643 * pixel_axis (pixel_axis) >> marker_detector = pri.CircleDetector() This process also has a :py:meth:`CircleDetector.batch_run` method, to which we pass a :py:class:`VideoReader` for the world video: .. doctest:: >>> world_reader = pri.VideoReader(pri.get_test_recording()) >>> marker_list = marker_detector.batch_run(world_reader) >>> marker_list[0] # doctest:+NORMALIZE_WHITESPACE +ELLIPSIS {'ellipses': [((202..., 258...), (3..., 7...), 5...), ((202..., 258...), (9..., 14...), 7...), ((202..., 258...), (14..., 21...), 8...)], 'img_pos': (202..., 258...), 'norm_pos': (0.1..., 0.6...), 'marker_type': 'Ref', 'timestamp': 2294..., 'frame_index': 0} Again, we can specify a stop (and start) index and return a dataset: .. doctest:: >>> marker_detector.batch_run(world_reader, end=100, return_type="dataset") Dimensions: (pixel_axis: 2, time: 34) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:22.248995781 ... 2019-10-10T16:43:23.472124815 * pixel_axis (pixel_axis) >> calibration = pri.Calibration(resolution=(1280, 720)) We pass the detected pupils and calibration markers to :py:meth:`Calibration.batch_run` to obtain a monocular calibration. .. doctest:: >>> calibration.batch_run(pupil_list_eye0, marker_list) # doctest:+NORMALIZE_WHITESPACE +ELLIPSIS {'params': ([-28..., -29..., 15..., 14..., 41..., -29..., 13...], [-2..., -14..., 2..., 13..., -0..., 0..., 4...], 7)} It is also possible to perform a binocular calibration, provided that we have detected pupils from the second eye camera. However, we need to take care that the detected pupils are in the correct chronological order. We can use :py:meth:`merge_pupils` for this: .. doctest:: >>> eye1_reader = pri.VideoReader( ... pri.get_test_recording(), stream="eye1", color_format="gray" ... ) >>> pupil_detector.camera_id = 1 >>> pupil_list_eye1 = pupil_detector.batch_run(eye1_reader) >>> pupil_list = pri.merge_pupils(pupil_list_eye0, pupil_list_eye1) Now we can run a binocular calibration. As you can see, the result is different this time, as it includes binocular calibration coefficients as well as monocular coefficients for each eye: .. doctest:: >>> calibration_result = calibration.batch_run(pupil_list, marker_list) >>> calibration_result # doctest:+NORMALIZE_WHITESPACE +ELLIPSIS {'params': ([-1..., -12..., -2..., 1..., -0..., 8..., 5..., -2..., 1..., -6..., 1..., 5..., 5...], [8..., 16..., 4..., 7..., -4..., -12..., -13..., 13..., -3..., -8..., -10..., 17..., -6...], 13), 'params_eye0': ([-28..., -29..., 15..., 14..., 41..., -29..., 13...], [2..., 14..., -2..., -13..., 0..., -0..., -3...], 7), 'params_eye1': ([-3..., -0..., 2..., -1..., 3..., -0..., 1...], [1..., -2..., -1..., 9..., -1..., 6..., 0...], 7)} .. note:: Running a calibration on pupil and marker datasets is not yet possible. Gaze mapping ------------ Finally, we can use the :py:class:`GazeMapper` to map detected pupils to gaze data according to a previously obtained calibration: .. doctest:: >>> gaze_mapper = pri.GazeMapper(calibration=calibration_result) As usual, we use the :py:meth:`GazeMapper.batch_run` method for post-hoc mapping: .. doctest:: >>> gaze_list = gaze_mapper.batch_run(pupil_list) >>> gaze_list[0] # doctest:+NORMALIZE_WHITESPACE +ELLIPSIS {'topic': 'gaze.2d.01.', 'norm_pos': (0.33..., 0.67...), 'confidence': 0.97..., 'timestamp': 2294..., 'base_data': [...]} The method can also return a dataset, although we need to provide a dictionary with the recording info to get the correspondence between recorded (monotonic) timestamps and datetime timestamps: .. doctest:: >>> info = pri.load_info(pri.get_test_recording()) >>> gaze_mapper.batch_run(pupil_list, return_type="dataset", info=info) Dimensions: (pixel_axis: 2, time: 5154) Coordinates: * time (time) datetime64[ns] 2019-10-10T16:43:20.278882504 ... 2019-10-10T16:43:41.326934099 * pixel_axis (pixel_axis)